15 research outputs found

    Novel continuum modeling of crystal surface evolution

    Full text link
    We propose a novel approach to continuum modeling of the dynamics of crystal surfaces. Our model follows the evolution of an ensemble of step configurations, which are consistent with the macroscopic surface profile. Contrary to the usual approach where the continuum limit is achieved when typical surface features consist of many steps, our continuum limit is approached when the number of step configurations of the ensemble is very large. The model can handle singular surface structures such as corners and facets. It has a clear computational advantage over discrete models.Comment: 4 pages, 3 postscript figure

    Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on TiN(111)

    Full text link
    In situ low-energy electron microscopy was used to study interlayer mass transport kinetics during annealing of three-dimensional (3D) TiN(111) mounds, consisting of stacked 2D islands, at temperatures T between 1550 and 1700 K. At each T, the islands decay at a constant rate, irrespective of their initial position in the mounds, indicating that mass is not conserved locally. From temperature-dependent island decay rates, we obtain an activation energy of 2.8+/-0.3 eV. This is consistent with the detachment-limited decay of 2D TiN islands on atomically-flat TiN(111) terraces [Phys. Rev. Lett. 89 (2002) 176102], but significantly smaller than the value, 4.5+/-0.2 eV, obtained for bulk-diffusion-limited spiral step growth [Nature 429, 49 (2004)]. We model the process based upon step flow, while accounting for step-step interactions, step permeability, and bulk mass transport. The results show that TiN(111) steps are highly permeable and exhibit strong repulsive temperature-dependent step-step interactions that vary between 0.003 and 0.076 eV-nm. The rate-limiting process controlling TiN(111) mound decay is surface, rather than bulk, diffusion in the detachment-limited regime.Comment: 26 pages, 5 figure

    On computational irreducibility and the predictability of complex physical systems

    Full text link
    Using elementary cellular automata (CA) as an example, we show how to coarse-grain CA in all classes of Wolfram's classification. We find that computationally irreducible (CIR) physical processes can be predictable and even computationally reducible at a coarse-grained level of description. The resulting coarse-grained CA which we construct emulate the large-scale behavior of the original systems without accounting for small-scale details. At least one of the CA that can be coarse-grained is irreducible and known to be a universal Turing machine.Comment: 4 pages, 2 figures, to be published in PR

    Decay of one dimensional surface modulations

    Full text link
    The relaxation process of one dimensional surface modulations is re-examined. Surface evolution is described in terms of a standard step flow model. Numerical evidence that the surface slope, D(x,t), obeys the scaling ansatz D(x,t)=alpha(t)F(x) is provided. We use the scaling ansatz to transform the discrete step model into a continuum model for surface dynamics. The model consists of differential equations for the functions alpha(t) and F(x). The solutions of these equations agree with simulation results of the discrete step model. We identify two types of possible scaling solutions. Solutions of the first type have facets at the extremum points, while in solutions of the second type the facets are replaced by cusps. Interactions between steps of opposite signs determine whether a system is of the first or second type. Finally, we relate our model to an actual experiment and find good agreement between a measured AFM snapshot and a solution of our continuum model.Comment: 18 pages, 6 figures in 9 eps file

    Coarse-graining of cellular automata, emergence, and the predictability of complex systems

    Full text link
    We study the predictability of emergent phenomena in complex systems. Using nearest neighbor, one-dimensional Cellular Automata (CA) as an example, we show how to construct local coarse-grained descriptions of CA in all classes of Wolfram's classification. The resulting coarse-grained CA that we construct are capable of emulating the large-scale behavior of the original systems without accounting for small-scale details. Several CA that can be coarse-grained by this construction are known to be universal Turing machines; they can emulate any CA or other computing devices and are therefore undecidable. We thus show that because in practice one only seeks coarse-grained information, complex physical systems can be predictable and even decidable at some level of description. The renormalization group flows that we construct induce a hierarchy of CA rules. This hierarchy agrees well with apparent rule complexity and is therefore a good candidate for a complexity measure and a classification method. Finally we argue that the large scale dynamics of CA can be very simple, at least when measured by the Kolmogorov complexity of the large scale update rule, and moreover exhibits a novel scaling law. We show that because of this large-scale simplicity, the probability of finding a coarse-grained description of CA approaches unity as one goes to increasingly coarser scales. We interpret this large scale simplicity as a pattern formation mechanism in which large scale patterns are forced upon the system by the simplicity of the rules that govern the large scale dynamics.Comment: 18 pages, 9 figure

    Profile scaling in decay of nanostructures

    Full text link
    The flattening of a crystal cone below its roughening transition is studied by means of a step flow model. Numerical and analytical analyses show that the height profile, h(r,t), obeys the scaling scenario dh/dr = F(r t^{-1/4}). The scaling function is flat at radii r<R(t) \sim t^{1/4}. We find a one parameter family of solutions for the scaling function, and propose a selection criterion for the unique solution the system reaches.Comment: 4 pages, RevTex, 3 eps figure
    corecore